Abstract

The oxidation of the Ni(111) surface under ultrahigh-vacuum conditions is studied experimentally with low-energy electron diffraction and high-resolution X-ray photoelectron spectroscopy. Exposure of the clean Ni(111) surface to molecular oxygen at room temperature followed by annealing at 400 K leads to the formation of two different structures (2×2) and (33×33)R30∘, prior to the formation of the NiO(111) monolayer. The O 1s core levels indicate that the obtained oxide is terminated by oxygen atoms while the valence band measurements clearly reveal the band gap of NiO. The energy difference between the Fermi level and the maximum of the valance band is extracted and is found to be 0.47 eV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.