Abstract

We report the growth and characterization of III-nitride ternary thin films (AlxGa1−xN, InxAl1−xN and InxGa1−xN) at ≤500°C by plasma assisted atomic layer epitaxy (PA-ALE) over a wide stoichiometric range including the range where phase separation has been an issue for films grown by molecular beam epitaxy and metal organic chemical vapor deposition. The composition of these ternaries was intentionally varied through alterations in the cycle ratios of the III-nitride binary layers (AlN, GaN, and InN). By this digital alloy growth method, we are able to grow III-nitride ternaries by PA-ALE over nearly the entire stoichiometry range including in the spinodal decomposition region (x=15–85%). These early efforts suggest great promise of PA-ALE at low temperatures for addressing miscibility gap challenges encountered with conventional growth methods and realizing high performance optoelectronic and electronic devices involving ternary/binary heterojunctions, which are not currently possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.