Abstract

The effect of various planes was studied when growing epitaxial layers by liquid-phase epitaxy (LPE) on the profiled InP substrates. The studies allowed obtaining buried heterostructures in the InP/InGaAsP system and creating highly efficient laser diodes and image sensors.It was found that protruding mesa strips or in-depth mesa strips in the form of channels formed by the {111}А, {111}B, {110}, {112}A, or {221}A family of planes can be obtained with the corresponding selection of an etching agent, strip orientation, and a method of obtaining a masking coating. It was noted that in the case of the polarity of axes being in the direction of <111>, the cut of mesa strips was conducted along the most densely packaged planes. This cut led to the difference in rates of both chemical etching and epitaxial burying of profiled surfaces.The cut was made along the planes at a low dissolution rate {111}A for a sphalerite lattice, to which the studied material, indium phosphide, belongs. Analysis of planes {110} and {Ī10} showed that the location of the most densely packaged planes {111}A and {111}B relative to them is different.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.