Abstract
We show that Lie groups and their respective algebras, special functions and rigged Hilbert spaces are complementary concepts that coexist together in a common framework and that they are aspects of the same mathematical reality. Special functions serve as bases for infinite dimensional Hilbert spaces supporting linear unitary irreducible representations of a given Lie group. These representations are explicitly given by operators on the Hilbert space H and the generators of the Lie algebra are represented by unbounded self-adjoint operators. The action of these operators on elements of continuous bases is often considered. These continuous bases do not make sense as vectors in the Hilbert space; instead, they are functionals on the dual space, Φ × , of a rigged Hilbert space, Φ ⊂ H ⊂ Φ × . In fact, rigged Hilbert spaces are the structures in which both, discrete orthonormal and continuous bases may coexist. We define the space of test vectors Φ and a topology on it at our convenience, depending on the studied group. The generators of the Lie algebra can often be continuous operators on Φ with its own topology, so that they admit continuous extensions to the dual Φ × and, therefore, act on the elements of the continuous basis. We investigate this formalism for various examples of interest in quantum mechanics. In particular, we consider S O ( 2 ) and functions on the unit circle, S U ( 2 ) and associated Laguerre functions, Weyl–Heisenberg group and Hermite functions, S O ( 3 , 2 ) and spherical harmonics, s u ( 1 , 1 ) and Laguerre functions, s u ( 2 , 2 ) and algebraic Jacobi functions and, finally, s u ( 1 , 1 ) ⊕ s u ( 1 , 1 ) and Zernike functions on a circle.
Highlights
Harmonic analysis has undergone strong development since the first work by Fourier [1].The main idea of the Fourier method is to decompose functions in a superposition of other particular functions, i.e., “special functions”
The generators of the Lie algebra can often be continuous operators on Φ with its own topology, so that they admit continuous extensions to the dual Φ× and, act on the elements of the continuous basis. We investigate this formalism for various examples of interest in quantum mechanics
We have a set of mathematical objects: classical orthogonal polynomials, Lie algebras, Fourier analysis, continuous and discrete bases, and rigged Hilbert spaces fully incorporated in a harmonic frame that can bee used in quantum mechanics as well as in signal processing
Summary
Harmonic analysis has undergone strong development since the first work by Fourier [1]. In many cases, such special functions support representations of groups and in this way group representation theory appears closely linked to harmonic analysis [3] We have a set of mathematical objects: classical orthogonal polynomials, Lie algebras, Fourier analysis, continuous and discrete bases, and rigged Hilbert spaces fully incorporated in a harmonic frame that can bee used in quantum mechanics as well as in signal processing. In a series of previous articles, we gave some examples showing that Lie groups and algebras, special functions, discrete and continuous bases and rigged Hilbert spaces (RHS) are particular aspects of the same mathematical reality, for which a general theory is needed.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have