Abstract

The most common statistical procedure with a sample of circular data is to test the null hypothesis that points are spread uniformly around the circle without a preferred direction. An array of tests for this has been developed. However, these tests were designed for continuously distributed data, whereas often (e.g. due to limited precision of measurement techniques) collected data is aggregated into a set of discrete values (e.g. rounded to the nearest degree). This disparity can cause an uncontrolled increase in type I error rate, an effect that is particularly problematic for tests that are based on the distribution of arc lengths between adjacent points (such as the Rao spacing test). Here, we demonstrate that an easy-to-apply modification can correct this problem, and we recommend this modification when using any test, other than the Rayleigh test, of circular uniformity on aggregated data. We provide R functions for this modification for several commonly used tests. In addition, we tested the power of a recently proposed test, the Gini test. However, we concluded that it lacks sufficient increase in power to replace any of the tests already in common use. In conclusion, using any of the standard circular tests (except the Rayleigh test) without modifications on rounded/aggregated data, especially with larger sample sizes, will increase the proportion of false-positive results—but we demonstrate that a simple and general modification avoids this problem.Significance statementCircular data are widespread across biological disciplines, e.g. in orientation studies or circadian rhythms. Often these data are rounded to the nearest 1–10 degrees. We have shown previously that this leads to an inflation of false-positive results when testing whether the data is significantly different from a random distribution using the Rao test. Here we present a modification that avoids this increase in false-positives for rounded data while retaining statistical power for a variety of tests. In sum, we provide comprehensive guidance on how best to test for departure from uniformity in non-continuous data.

Highlights

  • In biology, many variables are recorded on scales that are cyclical rather than linear—the common examples of such are compass directions, angles, times of year and times of day

  • The six TB tests produced type I error rates close to the nominal 5% level for the three smallest sample sizes (5, 10 and 15) but for higher samples of continuous data type I error rates were lower than expected for these tests

  • The type I error rate climbed with sample size for the other standard tests with the notable exceptions of the Rayleigh and chi-squared tests

Read more

Summary

Introduction

Many variables are recorded on scales that are cyclical rather than linear—the common examples of such are compass directions, angles, times of year and times of day. What these cyclical scales have in common is that the measurement scale has a natural repeating period to it, and data can often be effectively presented on the circumference of a circle. Behav Ecol Sociobiol (2020) 74: 100 might be divided into two skewed modes, each on the extremes of this linearized scale (e.g. from 350° to 359° and 0° to 10°) This would be a dangerous misinterpretation of the actual behaviour of the cell, which, in this example, fires in directions in only a single grouping around 0° following a von Mises distribution (the circular analogue of a normal distribution)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.