Abstract

Circular data are common in biological studies. The most fundamental question that can be asked of a sample of circular data is whether it suggests that the underlying population is uniformly distributed around the circle, or whether it is concentrated around at least one preferred direction (e.g. a migratory goal or activity phase). We compared the statistical power of five commonly used tests (the Rayleigh test, the V-test, Watson’s test, Kuiper’s test and Rao’s spacing test) across a range of different unimodal scenarios. The V-test showed higher power for symmetrical distributions, Rao’s spacing performed worst for all explored unimodal distributions tested and the remaining three tests showed very similar performance. However, the V-test only applies if the hypothesis is restricted to one (pre-specified) direction of interest. In all other unimodal cases, we recommend using the Rayleigh test. Much less explored is the multimodal case with data concentrated around several directions. We performed power simulations for a variety of multimodal situations, testing the performance of the widely used Rayleigh, Rao’s, Watson, and Kuiper’s tests as well as the more recent Bogdan and Hermans-Rasson tests. Our analyses of alternative statistical methods show that the commonly used tests lack statistical power in many of multimodal cases. Transformation of the raw data (e.g. doubling the angles) can overcome some of the issues, but only in the case of perfect f-fold symmetry. However, the Hermans-Rasson method, which is not yet implemented in any software package, outcompetes the alternative tests (often by substantial margins) in most of the multimodal situations explored. We recommend the wider uptake of the powerful but hitherto neglected Hermans-Rasson method. In summary, we provide guidance for biologists helping them to make decisions when testing circular data for single or multiple departures from uniformity.

Highlights

  • Circular data are characterized by an inherent periodicity absent from measurements made on a linear scale

  • Circular data need special treatment in data analysis: consider that an angle of 355° is much nearer to an angle of 5° than it is to an angle of 330°, and so a simple arithmetic mean for example can be quite misleading

  • Many texts have been dedicated to describing statistical treatment of circular data: e.g. Batschelet (1981), Fisher (1995), Jammalamadaka and SenGupta (2001), Ley and Verdebout (2017), Mardia and Jupp (2000), Pewsey et al (2013), and some commonly used general statistics texts aimed at biologists cover this (e.g. Zar 2013)

Read more

Summary

Introduction

Circular data are characterized by an inherent periodicity absent from measurements made on a linear scale (such as mass or length). There is a lack of clear guidance on how to most effectively test for departure from circular uniformity

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.