Abstract

The group theoretical methods worked out by Bargmann, Mackey and Wigner, which deductively establish the Quantum Theory of a free particle for which Galileian transformations form a symmetry group, are extended to the case of an interacting particle. In doing so, the obstacles caused by loss of symmetry are overcome. In this approach, specific forms of the wave equation of an interacting particle, including the equation derived from the minimal coupling principle, are implied by particular first-order invariance properties that characterize the interaction with respect to specific subgroups of Galileian transformations; moreover, the possibility of yet unknown forms of the wave equation is left open.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.