Abstract

Given a graph $G$ with $n$ vertices and an Abelian group $A$ of order $n$, an $A$-distance antimagic labelling of $G$ is a bijection from $V(G)$ to $A$ such that the vertices of $G$ have pairwise distinct weights, where the weight of a vertex is the sum (under the operation of $A$) of the labels assigned to its neighbours. An {$A$-distance magic labelling} of $G$ is a bijection from $V(G)$ to $A$ such that the weights of all vertices of $G$ are equal to the same element of $A$. In this paper we study these new labellings under a general setting with a focus on product graphs. We prove among other things several general results on group antimagic or magic labellings for Cartesian, direct and strong products of graphs. As applications we obtain several families of graphs admitting group distance antimagic or magic labellings with respect to elementary Abelian groups, cyclic groups or direct products of such groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.