Abstract

Calculating a product of multiple graphs has been studied in mathematics, engineering, computer science, and more recently in network science, particularly in the context of multilayer networks. One of the important questions to be addressed in this area is how to characterize spectral properties of a product graph using those of its factor graphs. While several such characterizations have already been obtained analytically (mostly for adjacency spectra), characterization of Laplacian spectra of direct product and strong product graphs has remained an open problem. Here we develop practical methods to estimate Laplacian spectra of direct and strong product graphs from spectral properties of their factor graphs using a few heuristic assumptions. Numerical experiments showed that the proposed methods produced reasonable estimation with percentage errors confined within a ±10% range for most eigenvalues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.