Abstract
In many group decision-making situations, decision makers’ preferences for alternatives are expressed in preference relations (including fuzzy preference relations and multiplicative preference relations). An important step in the process of aggregating preference relations, is to determine the importance weight of each preference relation. In this paper, we develop a number of goal programming models and quadratic programming models based on the idea of maximizing group consensus. Our models can be used to derive the importance weights of fuzzy preference relations and multiplicative preference relations. We further develop iterative algorithms for reaching acceptable levels of consensus in group decision making based on fuzzy preference relations or multiplicative preference relations. Finally, we include an illustrative example.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have