Abstract

A model is proposed for group chase and escape using chemotactic movements only. In the proposed model, the movement depends on the concentration of the chemical substances released by each agent. Chemotaxis-based interactions propagate slower and later, and exist locally between agents, making groups chase and escape under more uncertain circumstances than in cases where agent distance measurements use electromagnetic waves, such as visible light. Numerical results with the model demonstrate that maintaining a longer distance between the chasers and targets is a better strategy for each group.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call