Abstract

Machine-type communications (MTC) are gaining significant research attention as one of the most promising technologies for the fifth generation (5G) mobile networks. A critical issue handled by MTC is support for massive numbers of connections, which is a growing problem that will become increasingly challenging as MTC share spectrum resources with cellular communication. Here, not only the number of connections but also the data rate requirements of cellular users (CUEs) need to be considered. Given these issues, in this paper, we formulate a group-basedjoint signaling and data resource optimization model constrained by network resource and data rate requirements in order to maximize the number of connections. We also note that this problem is nonconvex and that obtaining an optimal solution is computationally complex for MTC with massive numbers of users (UEs). Therefore, we decompose the problem into group-based data aggregation and resource allocation subproblems.To solve these two subproblems, we develop an adaptive group head selection algorithm and a joint signaling and data resource allocation algorithm that satisfy both the data rate requirement and resource constraints, respectively. Our simulation results show that our proposed algorithms significantly improve the number of connections when compared with other classic methods. Furthermore, our results reveal that thelimiting factor on the number of connections changes with the ratio of the number of MTC UEs to that of CUEs and the ratio ofdata requirement of MTC UEs to that of CUEs. Finally, we note that our proposed group-based resource allocation algorithm can effectivelyimprove the number of connections, especially when more MTC UEs and a small amount of MTC data are present.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.