Abstract

The problem of air pollution threatens public health. Air quality forecasting can provide the air quality index hours or even days later, which can help the public to prevent air pollution in advance. Previous works focus on citywide air quality forecasting and cannot solve nationwide city forecasting problems, whose difficulties lie in capturing the latent dependencies between geographically distant but highly correlated cities. In this article, we propose the group-aware graph neural network (GAGNN), a hierarchical model for nationwide city air quality forecasting. The model constructs a city graph and a city group graph to model the spatial and latent dependencies between cities, respectively. GAGNN introduces a differentiable grouping network to discover the latent dependencies among cities and generate city groups. Based on the generated city groups, a group correlation encoding module is introduced to learn the correlations between them, which can effectively capture the dependencies between city groups. After the graph construction, GAGNN implements message passing mechanism to model the dependencies between cities and city groups. The evaluation experiments on two real-world nationwide city air quality datasets, including the China dataset and the US dataset, indicate that our GAGNN outperforms existing forecasting models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.