Abstract
Generally, Air pollution alludes to the issue of toxins into the air that are harmful to human well being and the entire planet. It can be described as one of the most dangerous threats that the humanity ever faced. It causes damage to animals, crops, forests etc. To prevent this problem in transport sectors have to predict air quality from pollutants using machine learning techniques. Subsequently, air quality assessment and prediction has turned into a significant research zone. The aim is to investigate machine learning based techniques for air quality prediction. The air quality dataset is preprocessed with respect to univariate analysis, bi-variate and multi-variate analysis, missing value treatments, data validation, data cleaning/preparing. Then, air quality is predicted using supervised machine learning techniques like Logistic Regression, Random Forest, K-Nearest Neighbors, Decision Tree and Support Vector Machines. The performance of various machine learning algorithms is compared with respect to Precision, Recall and F1 Score. It is found that Decision Tree algorithm works well for predicting air quality. This application can help the meteorological Department in predicting air quality. In future, this work can be optimized by applying Artificial Intelligence techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Innovative Technology and Exploring Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.