Abstract
Specific vulnerability estimations for groundwater resources are usually geographic information system-based (GIS) methods that establish spatial qualitative indexes which determine the sensitivity to infiltration of surface contaminants, but with little validation of the working hypothesis. On the other hand, lumped parameter models, such as the Residence Time Distribution (RTD), are used to predict temporal water quality changes in drinking water supply, but the lumped parameters do not incorporate the spatial variability of the land cover and use. At the interface between these two approaches, a GIS tool was developed to estimate the lumped parameters from the vulnerability mapping dataset. In this method the temporal evolution of groundwater quality is linked to the vulnerability concept on the basis of equivalent lumped parameters that account for the spatially distributed hydrodynamic characteristics of the overall unsaturated and saturated flow nets feeding the drinking water supply. This vulnerability mapping method can be validated by field observations of water concentrations. A test for atrazine specific vulnerability of the Val d’Orleans karstic aquifer demonstrates the reliability of this approach for groundwater contamination assessment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have