Abstract

The dynamics of groundwater at the beach face land–ocean boundary have important implications to the exchange of water, nutrients, and pollutants between the ocean and coastal aquifers, and more subtly, varying groundwater levels may induce differing morphological response at the beach face. As a component of the multi-institution Barrier Dynamics Experiment (BARDEX II), groundwater fluxes and flow paths within a prototype-scale sandy barrier are quantified and reported at the three fundamental spatio-temporal scales (individual waves, the beach face, and total barrier), under controlled wave and water level conditions. A particular feature of the experimental programme was the inclusion of a back-barrier ‘lagoon’, that via a pump system and an intermediate water reservoir enabled the forcing of contrasting hydraulic gradients across the barrier. It was observed that the groundwater level, flow paths, and fluxes within the beach face region of the sand barrier were predominantly controlled by the action of waves at the beach face, regardless of the overall seaward- or landward-directed barrier-scale hydraulic gradients. In the presence of waves, all tests undertaken to complete this study developed a seaward gradient in this zone under the influence of waves. As a further result of wave forcing at the beach face boundary, localised groundwater flow divides were observed to develop, further partitioning the circulation and flow paths of groundwater within the prototype-scale sand barrier.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.