Abstract
Groundwater-dependent ecosystems in areas with industrial land use are at risk of exposure to a PFAS chemicals. We investigated one such system with several known PFAS source areas, where high and low permeability sediments (glacial) coupled with groundwater-lake and groundwater/surface-water interactions created complex 'source to seep' dynamics. Using heat-tracing and chemical methods, numerous preferential groundwater discharge zones were identified and sampled across the upper Quashnet River stream-wetland system in Mashpee, MA, USA, downgradient of Joint Base Cape Cod (JBCC). Surface-water and groundwater samples were analyzed for 40 PFAS compounds between March and October 2022. Samples were collected from groundwater seeps identified as preferential discharge points (PDPs), wells upgradient of the stream-wetland system, contributing flow-through kettle lakes, and along Quashnet River surface-waters. PFAS from sampled waters contained perfluorinated carboxylates (PFPea, PFHxA, PFNA), perfluorinated sulfonates (PFBS, PFPeS, PFHxS, PFOS), fluorotelomer sulfonates (6:2, 8:2 FtS), and perfluoroalkyl sulfonamides (PFOSA). Samples from PDPs and wells had measured PFAS concentrations ranging from non-detect to 4677ng/Lng/L (mean=418ng/L, std.=709ng/L), and a range of deuterium excess values (3.2 to 15.9 per mil) indicative of varying degrees of groundwater-lake interaction prior to groundwater flowpath emergence at PDPs. Correlations (p<0.01) between deuterium excess, %PFAS precursors, and terminal PFAS compounds highlighted potential precursor transformations associated with lake-groundwater exchange along flowpaths sourcing PDPs. However, some seepages had higher total PFAS concentrations (>1000ng/L) than upgradient kettle lakes despite showing lake (evaporative) isotopic signatures, indicating the potential for groundwater flowpath convergence at wetland discharge zones and the influence of lakebed PFAS precursor reactions. Results from these synoptic surveys address gaps in the existing PFAS literature by demonstrating the importance of subsurface fate and transport on PFAS compound concentrations and mass loading in preferential groundwater discharge zones.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have