Abstract

A numerical study, based on a density-dependent variably saturated groundwater flow model, was conducted to investigate flow and salt transport in a nearshore aquifer under intensified wave conditions caused by offshore storms. Temporally varying onshore hydraulic gradients due to wave setup were determined as the seaward boundary condition for the simulated aquifer. The results showed a rapid increase in influxes across the aquifer-ocean interface in response to the wave event followed by a more gradual increase in effluxes. The upper saline plume first widened horizontally as the wave setup point moved landward. It then expanded vertically with recirculating seawater pushed downward by the wave-induced hydraulic gradient. The time for the salt distribution to return to the prestorm condition was up to a hundred days and correlated strongly with the time for seawater to recirculate through the aquifer. The pathways of recirculating seawater and fresh groundwater were largely modified by the wave event. These pathways crossed through the same spatial locations at similar times, indicating significant salt-freshwater mixing. The flow and salt transport dynamics were more responsive to wave events of longer duration and higher intensity, especially in more permeable aquifers with lower fresh groundwater discharge. Despite their larger response, aquifers with higher permeability and beach slope recovered more rapidly postevent. The rapid recovery of the flows compared with the salinity distribution should be considered in field data interpretation. Due to their long-lasting impact, wave events may significantly influence the geochemical conditions and the fate of chemicals in a subterranean estuary. Key Points Intensified waves perturb flow and transport in a subterranean estuary Lengthy period (months) for salinity distribution to recover from a wave event Exchange fluxes and flows respond and recover rapidly following a wave event

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call