Abstract

Summary Quantifying groundwater discharge remains a challenge due to its large temporal and spatial variability. Here, we quantify groundwater discharge into a small estuary using radon (222Rn) and radium isotopes (223Ra and 224Ra). High temporal resolution (30 min time steps) radon observations at 4 time series stations were used to determine where groundwater discharge is prevalent in the estuary, and to reduce mass balance model uncertainties. A three-endmember mixing model was developed based on short-lived radium isotopes (sampled at a single location) to separate the shallow saline and deep fresh sources of the discharging groundwater. The results show that using multiple 222Rn time series stations decreased the overall uncertainty of groundwater discharge estimates from about 41% to 23%. The radon derived groundwater flux was 56 ± 13 and 35 ± 12 cm d−1 in wet and dry conditions, respectively. The spatially distributed stations detected a well-defined small area located four kilometers upstream from the mouth of the estuary as a groundwater discharging hotspot. Estimates based on a 223Ra and 224Ra mass balance resulted in groundwater discharge estimates of 65 ± 18 and 84 ± 48 cm d−1 in the wet and 18 ± 5 and 20 ± 6 cm d−1 in the dry. The mixing model revealed contrasting results for deep vs. fresh groundwater contribution in wet and dry conditions. In wet conditions, deep fresh groundwater discharging into the estuary contributed 65% compared to the shallow saline groundwater (35%), while during dry conditions a larger contribution (80%) was related to shallow groundwater. A comprehensive spatial and temporal sampling strategy can produce groundwater discharge estimates with lower uncertainty and provides additional insight on where groundwater enters surface waters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.