Abstract
Abstract While fractional entrainment rates for cumulus clouds have typically been derived from airborne observations, this limits the size and scope of available datasets. To increase the number of continental cumulus entrainment rate observations available for study, an algorithm for retrieving them from ground-based remote sensing observations has been developed. This algorithm, called the Entrainment Rate In Cumulus Algorithm (ERICA), uses the suite of instruments at the Southern Great Plains (SGP) site of the U.S. Department of Energy's Atmospheric Radiation Measurement Program (ARM) Climate Research Facility as inputs into a Gauss–Newton optimal estimation scheme, in which an assumed guess of the entrainment rate is iteratively adjusted through intercomparison of modeled cloud attributes to their observed counterparts. The forward model in this algorithm is the explicit mixing parcel model (EMPM), a cloud parcel model that treats entrainment as a series of discrete entrainment events. A quantified value for the uncertainty in the retrieved entrainment rate is also returned as part of the retrieval. Sensitivity testing and information content analysis demonstrate the robust nature of this method for retrieving accurate observations of the entrainment rate without the drawbacks of airborne sampling. Results from a test of ERICA on 3 months of shallow cumulus cloud events show significant variability of the entrainment rate of clouds in a single day and from one day to the next. The mean value of 1.06 km−1 for the entrainment rate in this dataset corresponds well with prior observations and simulations of the entrainment rate in cumulus clouds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.