Abstract

AbstractThe objective of this study is to evaluate two satellite rainfall products Global Precipitation Measurement Integrated MultisatellitE Retrievals and Tropical Rainfall Measuring Mission 3B42V7 (GPM IMERG and TRMM 3B42V7) in southern Tibetan Plateau region, with special focus on the dependence of products' performance on topography and rainfall intensity. Over 500 in situ rain gauges constitute an unprecedentedly dense rain gauge network over this region and provide an exceptional resource for ground validation of satellite rainfall estimates. Our evaluation centers on the rainy season from May to October in 2014. Results indicate that (1) GPM product outperforms TRMM at all spatial scales and elevation ranges in detecting daily rainfall accumulation; (2) rainfall accumulation over the entire rainy season is negatively correlated with mean elevation for rain gauges and the two satellite rainfall products, while the performance of TRMM also significantly correlates with topographic variations; (3) in terms of the ability of rainfall detection, false alarming ratio of TRMM (21%) is larger than that of GPM (14%), while missing ratio of GPM (13%) is larger than that of TRMM (9%). GPM tends to underestimate the amount of light rain events of 0–1 mm/d, while the opposite (overestimation) is true for TRMM. GPM shows better detecting ability for light rainfall (0–5 mm/d) events but there is no detection skill for both GPM and TRMM at high‐elevation (>4500 m) regions. Our results not only highlight the superiority of GPM to TRMM in southern Tibetan Plateau region but also recommend that further improvement on the rainfall retrieval algorithm is needed by considering topographical influences for both GPM and TRMM rainfall products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call