Abstract

The submillimetre-wave spectrum of 14NF3 has been measured and the ground state rotational spectrum has been reanalysed, including the K=3 splittings. The quadratic, cubic and semidiagonal quartic force field has been calculated at the CCSD(T) level of theory employing a basis set of at least polarized valence triple-zeta quality. This force field has been used to predict the spectroscopic constants, including the parameters specific to the doubly degenerate vibrational states. The calculated values are found to be in good agreement with the available experimental data. The equilibrium structure has been derived from the experimental ground state rotational constants and either the ab initio or the experimental rovibrational interaction parameters. These experimental and semiexperimental structures are in excellent agreement with the ab initio equilibrium geometry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call