Abstract

The density-matrix renormalization group is used to study the phase diagram of the one-dimensional half-filled Hubbard model with on-site (U) and nearest-neighbor (V) repulsion and hopping t. A critical line V(c)(U) approximately U/2 separates a Mott insulating phase from a charge-density-wave phase. The formation of bound charge excitations for V>2t changes the phase transition from continuous to first-order at a tricritical point U(t) approximately 3.7t, V(t)=2t. A frustrating effective antiferromagnetic spin coupling induces a bond-order-wave phase on the critical line V(c)(U) for U(t)<U less, similar 7t.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call