Abstract

On the condition of electron and LO-phonons strong-coupled, the ground-state energy of polaron has been obtained by using linear combination operator and unitary transformation methods in an asymmetric quantum dot. Quantum transition which causes the changes of the polaron lifetime is occurred in the quantum system due to the electron- phonon interaction and the influence of external temperature effect which is the polaron leap from the ground-state to the first-excited state absorbing a LO-phonon. Numerical calculation is performed and the results show that the ground-state lifetime of polaron in- creases with increasing the ground-state energy and decreases with increasing the coupling- strength. The ground-state lifetime is extented with the shorten of the temperature. It is also observed that the ground-state lifetime is a decreasing function of the transverse and longitudinal confinement lengths of the quantum dot. PACS: 73.21.La, 03.67.Ac, 85.35.Be

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.