Abstract

The properties of a strong-coupled bound magnetopolaron in an asymmetric quantum dot (QD) have been investigated by using the Tokuda modified linear combination operator and the unitary transformation methods on the basis of the Huybrechts' strong-coupled model. We derive the expressions of the ground-state energy as function of the transverse and longitudinal confinement lengths, the magnetic field. Numerical calculation is performed and the results show that the ground-state energy of the bound magnetopolaron splits into two branches, taking into account the spin influences. And the ground-state energy decreases with increasing the transverse and longitudinal confinement lengths and increases with the rising of the magnetic field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call