Abstract
Cooling mechanical resonators are of great importance in both fundamental study and applied science. We investigate the hybrid optomechanical cooling with a three-level atomic ensemble fixed in a strong excited optical cavity. By using the quantum noise approach, we find the upper bound of the noise spectrum and further present three optimal parameter conditions, which can yield a small heating coefficient, a large cooling coefficient, and thus a small final phonon number. Moreover, through the covariance matrix approach, results of numerical simulation are obtained, which are consistent with the theoretical expectations. It is demonstrated that our scheme can achieve ground state cooling in the highly unresolved sideband regime, within the current experimental technologies. Compared with the previous cooling methods, in our scheme, there are fewer constraints on the drive strength of atomic ensemble and number of atoms in the ensemble. In addition, the tolerable ranges of parameters for ground state cooling are extended. As a result, our scheme is very suitable for experiments and can be a guideline for the research of hybrid optomechanical cooling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics B: Atomic, Molecular and Optical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.