Abstract
Abstract The region of Central Italy is well known for its moderate to large earthquakes. Events such as the 2016 Mw 6.2 Amatrice earthquake generated in the shallow extensional tectonic regime motivate numerical simulations to gain insights into source-related ground-motion complexities in the near-source region. We utilize a hybrid integral-composite kinematic rupture model by Gallovič and Brokešová (2007) to simulate the Amatrice earthquake in a broadband frequency range (up to 10 Hz). In the first step, we optimize the input source parameters using a grid-search method by minimizing the spectral acceleration bias between synthetic and recorded strong-motion data at reference rock stations within 50 km of the source. To verify the robustness of the optimal model, we simulate the ground motions at 400 virtual stations and compare their spectral accelerations with the predictions of an empirical nonergodic ground-motion model (GMM) for rock sites in Central Italy (Sgobba et al., 2021). The synthetics show a good agreement with the empirical model regarding both median and variability. Finally, we account for local site effects at nonreference stations by combining the simulations on rock with empirical site terms derived by the nonergodic GMM. The site-corrected spectral responses generally improve the match with the observations, demonstrating a successful fusion of numerical simulations with empirical estimates toward reproducing near-source ground motions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have