Abstract

Atmospheric nitric acid (HNO3) has a significant impact on the formation of the ozone layer; therefore, its content is regularly monitored using various local and remote-sensing methods. We used ground-based measurements of solar IR spectra with a Bruker 125HR Fourier spectrometer to derive information on the HNO3 content at the St.Petersburg observational NDACC site in Peterhof. The HNO3 time series obtained showed a pronounced seasonal cycle with a maximum in winter and early spring and a minimum in summer and early autumn. The averaged seasonal variations in nitric acid varied from –30 to +60% for the 0–15 km layer, from –25 to +25% for the 15–50 km layer, and from –25 to +30% for total columns. For 2009–2022 measurement period, no statistically significant trend was found in the time series considered. Comparison of HNO3 stratospheric columns with independent satellite measurements by the MLS and ACE-FTS instruments showed their qualitative and quantitative agreement; the correlation coefficient between ground-based and satellite measurements totals 0.88–0.93. Time series on the vertical structure of the atmospheric nitric acid measured at the St.Petersburg site can be used both to analyze the state of the ozonosphere and to validate satellite measurements and refine the parameters of atmospheric models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.