Abstract
A Landau–Pekar variational theory is employed to obtain the ground and the first excited state binding energies of an electron bound to a Coulomb impurity in a polar semiconductor quantum dot (QD) with parabolic confinement in both two and three dimensions. It is found that the binding energy increase with increasing the Coulomb binding parameter and increase with the decrease in size of the QD and is much more pronounced with decreasing dimensionality.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have