Abstract

BackgroundSepsis induces group 2 innate lymphoid cell (ILC2) expansion in the lung. However, the origin of these lung-recruited ILC2 and the mechanism of ILC2 expansion are unclear. This study aims to determine the origin of lung-recruited ILC2 and its underlying mechanism in sepsis.MethodsSepsis was induced by cecal ligation and puncture (CLP) model in wild-type, IL-33-deficient and ST2-deficient mice. The frequency, cell number and C-X-C chemokine receptor 4 (CXCR4) expression of ILC2 in bone marrow (BM), blood and lung were measured by flow cytometry. In the in vitro studies, purified ILC2 progenitor (ILC2p) were challenged with IL-33 or G protein-coupled receptor kinase 2 (GRK2) inhibitor, the CXCR4 expression and GRK2 activity were detected by confocal microscopy or flow cytometry.ResultsWe show that IL-33 acts through its receptor, ST2, on BM ILC2p to induce GRK2 expression and subsequent downregulation of cell surface expression of CXCR4, which results in decreasing retention of ILC2p in the BM and promoting expansion of ILC2 in the lung. Importantly, we demonstrate that reduced IL-33 level in aging mice contributes to impaired ILC2 mobilization from BM and accumulation in the lung following sepsis.ConclusionThis study identifies a novel pathway in regulating ILC2p mobilization and expansion during sepsis and indicates BM as the main source of ILC2 in the lung following sepsis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.