Abstract
G protein-coupled receptor kinase-2 (GRK2) is a critical regulator of beta-adrenergic receptor (beta-AR) signaling and cardiac function. We studied the effects of mechanical stretch, a potent stimulus for cardiac myocyte hypertrophy, on GRK2 activity and beta-AR signaling. To eliminate neurohormonal influences, neonatal rat ventricular myocytes were subjected to cyclical equi-biaxial stretch. A hypertrophic response was confirmed by "fetal" gene up-regulation. GRK2 activity in cardiac myocytes was increased 4.2-fold at 48 h of stretch versus unstretched controls. Adenylyl cyclase activity was blunted in sarcolemmal membranes after stretch, demonstrating beta-AR desensitization. The hypertrophic response to mechanical stretch is mediated primarily through the G alpha(q)-coupled angiotensin II AT(1) receptor leading to activation of protein kinase C (PKC). PKC is known to phosphorylate GRK2 at the N-terminal serine 29 residue, leading to kinase activation. Overexpression of a mini-gene that inhibits receptor-G alpha(q) coupling blunted stretch-induced hypertrophy and GRK2 activation. Short hairpin RNA-mediated knockdown of PKC alpha also significantly attenuated stretch-induced GRK2 activation. Overexpression of a GRK2 mutant (S29A) in cardiac myocytes inhibited phosphorylation of GRK2 by PKC, abolished stretch-induced GRK2 activation, and restored adenylyl cyclase activity. Cardiac-specific activation of PKC alpha in transgenic mice led to impaired beta-agonist-stimulated ventricular function, blunted cyclase activity, and increased GRK2 phosphorylation and activity. Phosphorylation of GRK2 by PKC appears to be the primary mechanism of increased GRK2 activity and impaired beta-AR signaling after mechanical stretch. Cross-talk between hypertrophic signaling at the level of PKC and beta-AR signaling regulated by GRK2 may be an important mechanism in the transition from compensatory ventricular hypertrophy to heart failure.
Highlights
This article has been retracted by the publisher
An investigation by the Office of Research Integrity determined that falsified and/or fabricated data were included in Figs. 1, B and C; 2, A and B; 4, C and D; and 7, A and B
Authors are urged to introduce these corrections into any reprints they distribute
Summary
Retraction: G␣q-mediated activation of GRK2 by mechanical stretch in cardiac myocytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.