Abstract
Recent evidence suggests that visual feedback influences the adjustment of grip force to the changing load force exerted by a grasped object as it is manipulated. The current project investigated how visual feedback of object kinematics affects the coupling of grip force to load force by scaling the apparent displacements of the object viewed in virtual reality. Participants moved the object to manually track a moving virtual target. The predictability of the changing load force exerted by the object was also manipulated by altering the nature of target trajectories (and therefore the nature of object motions). When apparent object displacements increased in magnitude, grip force became more tightly coupled to load force over time. Furthermore, when load force variations were less predictable, the magnitude of apparent object displacements affected the relative degree of continuous versus intermittent coupling of grip force to load force. These findings show that visual feedback of object motion affects the ongoing dynamical coupling between grip force control and load force experienced during manipulation of a grasped object.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.