Abstract

Cascade hydropower stations have good regulation and storage capacity and they can be used as a regulatory and compensatory “medium” to compensate for the instability of wind–photovoltaic power generation. This paper presents a short-term multi-objective coordinated dispatching model based on wind–photovoltaic–hydro heterogeneous energy hybrid power generation. The multi-objectives of the model included accepting new energy for power generation to the greatest possible extent, tracing the load curve of the grid with minimum differences, and minimizing the discarded water volume of the cascade reservoirs. To reduce the complexity of the problem, the model was decomposed into two-stage optimization model and solved by using the firefly algorithm. This model was applied to a national-level wind–photovoltaic–hydro complementary power generation base in China. The research results verified the validity of the model and showed that it was feasible to compensate for the wind–photovoltaic power output fluctuation by the cascade hydropower stations and to supply power to the grid by bundling these three power sources. During this process, the cascade hydropower stations certainly made some sacrifices and increased the amount of discarded water. The new operational strategy proposed in this paper can promote the low-carbon power dispatching and optimization of the energy structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.