Abstract

The sparse recovery space–time adaptive processing (SR-STAP) can reduce the requirements of clutter samples and suppress clutter effectively using limited training samples for airborne radar. Commonly, the whole angle-Doppler plane is uniformly discretized into small grid points in SR-STAP methods. However, the clutter patches deviate from the pre-discretized grid points in a non-sidelooking SR-STAP radar. The off-grid effect degrades the SR-STAP performance significantly. In this paper, a gridless SR-STAP method based on reweighted atomic norm minimization is proposed, in which the clutter spectrum is precisely estimated in the continuous angle-Doppler domain without resolution limit. Numerical simulations are conducted and the results show that the proposed method can achieve better performance than the SR-STAP methods with discretized dictionaries and the SR-STAP methods utilizing atomic norm minimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.