Abstract

AbstractTwo-dimensional (2D) direction-of-arrival (DOA) estimation with arbitrary planar sparse array has attracted more interest in massive multiple-input multiple-output application. The research on this issue recently has been advanced with the development of atomic norm technique, which provides super resolution methods for DOA estimation, when the number of snapshots is limited. In this paper, we study the problem of 2D DOA estimation from the sparse array with the sensors randomly selected from uniform rectangular array. In order to identify all azimuth and elevation angles of the incident sources jointly, the 2D atomic norm approach is proposed, which can be solved by semidefinite programming. However, the computational cost of 2D atomic norm is high. To address this issue, our work further reduces the computational complexity of the problem significantly by utilizing the atomic norm approximation method based on the concept of multiple measurement vectors. The numerical examples are provided to demonstrate the practical ability of the proposed method to reduce computational complexity and retain the estimation performance as compared to the competitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call