Abstract

Sparse arrays have attracted great attention in the field of direction-of-arrival (DOA) estimation due to the extended degrees of freedom (DOFs). Nevertheless, the traditional DOA estimation methods for sparse arrays suffer from degraded performance when sensor elements are uncalibrated. This paper presents a novel atomic norm-based algorithm for source localization with arbitrary sparse linear array (SLA) in the scenario with gain-phase uncertainties. Our proposed approach defines a new atomic norm for second order virtual signal by taking model errors into consideration. Then, the dual problem corresponding to original optimization problem is formulated to recover the DOAs by defining the dual atomic norm. We further present the corresponding semidefinite program characteristic that can be solved. The proposed method avoids iterations and restrictions on array configuration. It makes full use of all the DOFs provided by difference coarray of arbitrary SLA to estimate more sources and to provide high accuracy. Besides, compared with the existing coarray-based calibrated algorithms, the proposed algorithm does not need discretization on spatial domain. Computer simulations are carried out to demonstrate the superiority of the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.