Abstract
A triode crossed field tube has been operated as a high voltage on-off switch tube. A third, partially transparent (grid) electrode is interposed between the anode and cathode and electrically tied to the cathode by a grid leak resistor. High voltage is first applied to the anode and cathode; the magnetic field is then raised to the conduction level (~ 0.01 Tesla). Ignition does not occur because the magnetic field is too low in the grid-anode gap and the electric field is zero in the cathode-grid gap. Pulsing the grid positive relative to the cathode (~ 1 kV) then results in breakdown of the cathode-grid gap; plasma comunication between the two gaps then fully ignites the tube and closes the main power circuit. Grid ignition has been achieved at 50 kV as well as grid ignition followed by current interruption against 10 kV. These levels were limited by the use of a modified, laboratory tube and not by the physics of the technique.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have