Abstract

A volume integral algorithm for the non-homogeneous 3D elasticity traction boundary integral equation is presented. The body force volume integral is exactly split into a relatively simple boundary integral, together with a remainder volume integral that can be evaluated using a regular grid of cuboid cells covering the problem domain. Of particular importance for (inelastic) fracture analysis is that the volume integral over the regular grid is computed without explicit knowledge of the domain boundary, including the fracture surface. A Galerkin approximation is employed, and the numerical implementation is validated by solving body force elasticity problems with known solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.