Abstract

The grid resolution requirement for trustworthy Chemical Explosive Mode Analysis (CEMA) in Large Eddy Simulation (LES) of premixed turbulent combustion is proposed. Explicit filtering, to emulate the effect of the LES filter, is applied to one-dimensional laminar flame and three-dimensional planar turbulent flames across a wide range of Karlovitz numbers . The identification of the flame front by CEMA is found relatively insensitive to the cell size (Δ), while the combustion mode identification shows more significant sensitivity. Specifically, increasing Δ falsely enhances the auto-ignition and local extinction modes and suppresses the diffusion-assisted mode. Limited dependence of the CEMA performance on the turbulent combustion regime (Karlovitz number) is observed. A simple grid size criterion for reliable CEMA mode identification in LES is proposed as ; The criterion can be relaxed to in the laminar flame limit. Furthermore, theoretical analysis is conducted on an idealised chemistry-diffusion system. The effects of the filtering process and turbulence on the local combustion mode are demonstrated, which is consistent with the numerical observations. By incorporating turbulent combustion models in CEMA, potential improvement in identifying local combustion modes can be expected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.