Abstract

Widespread use of electric vehicles (EVs) requires investigating impacts of vehicles' charging on power systems. This study focuses on the design of a new DC fast-charging station (DCFCS) for EVs combined with local battery energy storages (BESs). Owing to the BESs, the DCFCS is able to decouple the peak load demand caused by multiple EVs and decrease the installation costs as well as the connection fees. The charging system is equipped with a bidirectional alternating current/direct current (DC) converter, two lithium-ion batteries and a DC/DC converter. The introduction of BES within the DCFCSs is investigated with regard to operational costs of the CSs as well as the ability of a BES to mitigate negative impacts on the power grid during congestion hours. The proposed solution is shown to reduce not only the installation costs, but also the charging time and it facilitates the integration of fast chargers in existing low-voltage grids. A cost-benefit analysis is performed to evaluate the financial feasibility of BES within the DCFCSs by considering the installation costs, grid connection costs and battery life cycle costs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call