Abstract

AbstractThis paper sets out to develop an efficient probabilistic optimal power flow (POPF) algorithm to assess the influence of wind power on power grid. Given a set of wind data at multiple sites, their marginal distributions are fitted by a newly developed generalized Johnson system, whose parameters are specified by a percentile matching method. The correlation of wind speeds is characterized by a flexible Liouville copula, which allows to model the asymmetric dependence structure. In order to improve the efficiency for solving POPF problem, a lattice sampling method is developed to generate wind samples at multiple sites, and a logistic mixture model is proposed to fit distributions of POPF outputs. Finally, case studies are performed, the generalized Johnson system is compared with Weibull distribution and the original Johnson system for fitting wind samples, Liouville copula is compared against Archimedean copula for modelling correlated wind samples, and lattice sampling method is compared with Sobol sequence and Latin hypercube sampling for solving POPF problem on IEEE 118‐bus system, the results indicate the higher accuracy of the proposed methods for recovering the joint cumulative distribution function of correlated wind samples, as well as the higher efficiency for calculating statistical information of POPF outputs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.