Abstract

BackgroundLarge-scale genetic studies of common human diseases have focused almost exclusively on the independent main effects of single-nucleotide polymorphisms (SNPs) on disease susceptibility. These studies have had some success, but much of the genetic architecture of common disease remains unexplained. Attention is now turning to detecting SNPs that impact disease susceptibility in the context of other genetic factors and environmental exposures. These context-dependent genetic effects can manifest themselves as non-additive interactions, which are more challenging to model using parametric statistical approaches. The dimensionality that results from a multitude of genotype combinations, which results from considering many SNPs simultaneously, renders these approaches underpowered. We previously developed the multifactor dimensionality reduction (MDR) approach as a nonparametric and genetic model-free machine learning alternative. Approaches such as MDR can improve the power to detect gene-gene interactions but are limited in their ability to exhaustively consider SNP combinations in genome-wide association studies (GWAS), due to the combinatorial explosion of the search space. We introduce here a stochastic search algorithm called Crush for the application of MDR to modeling high-order gene-gene interactions in genome-wide data. The Crush-MDR approach uses expert knowledge to guide probabilistic searches within a framework that capitalizes on the use of biological knowledge to filter gene sets prior to analysis. Here we evaluated the ability of Crush-MDR to detect hierarchical sets of interacting SNPs using a biology-based simulation strategy that assumes non-additive interactions within genes and additivity in genetic effects between sets of genes within a biochemical pathway.ResultsWe show that Crush-MDR is able to identify genetic effects at the gene or pathway level significantly better than a baseline random search with the same number of model evaluations. We then applied the same methodology to a GWAS for Alzheimer’s disease and showed base level validation that Crush-MDR was able to identify a set of interacting genes with biological ties to Alzheimer’s disease.ConclusionsWe discuss the role of stochastic search and cloud computing for detecting complex genetic effects in genome-wide data.

Highlights

  • Genomics has provided a better understanding of how DNA sequence variations influence disease susceptibility through biomolecular interactions, including protein-DNA, protein-RNA, RNA-RNA, and protein-protein binding within the context of a gene regulatory region

  • We discuss the role of stochastic search and cloud computing for detecting complex genetic effects in genome-wide data

  • Lari et al showed that single-nucleotide polymorphisms (SNPs) associated with breast cancer in genome-wide association studies (GWAS) are enriched in FOXA1 transcription factor binding sites resulting in allele-specific gene expression in cancer cells [1]

Read more

Summary

Introduction

Genomics has provided a better understanding of how DNA sequence variations influence disease susceptibility through biomolecular interactions, including protein-DNA, protein-RNA, RNA-RNA, and protein-protein binding within the context of a gene regulatory region. Lari et al showed that single-nucleotide polymorphisms (SNPs) associated with breast cancer in genome-wide association studies (GWAS) are enriched in FOXA1 transcription factor binding sites resulting in allele-specific gene expression in cancer cells [1] These same kinds of biomolecular interactions drive biochemical pathways and physiological systems, propagating genetic effects to the disease phenotype level. We previously developed the multifactor dimensionality reduction (MDR) approach as a nonparametric and genetic model-free machine learning alternative Approaches such as MDR can improve the power to detect gene-gene interactions but are limited in their ability to exhaustively consider SNP combinations in genome-wide association studies (GWAS), due to the combinatorial explosion of the search space. We evaluated the ability of Crush-MDR to detect hierarchical sets of interacting SNPs using a biology-based simulation strategy that assumes non-additive interactions within genes and additivity in genetic effects between sets of genes within a biochemical pathway

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.