Abstract

To improve the performance and durability of vehicle components, efforts have been made to reduce driveline oscillations using advanced active control algorithms. However, existing methods often rely on subjective parameter adjustments, which can be burdensome for designers. This study introduces an effective tuning algorithm for a driveline vibration controller that accounts for nonlinear backlash effects. Initially, a driveline dynamics model is developed to focus on transient oscillations resulting from changes in driving force and the presence of nonlinear backlash. The backlash impact is incorporated into the model through a discontinuous dead-zone region. Two operational dynamics, which are the contact mode and the backlash mode, are considered. A dynamic output feedback [Formula: see text] controller is designed as a baseline controller to mitigate low-frequency resonance in the driveline. A solution for managing the nonlinear backlash challenges is introduced, involving the use of a simple control mode switching algorithm in conjunction with the controller. This algorithm relies on a time-dependent-switched Kalman filter. Additionally, the optimal settings for the parameters needed by the mode-switching algorithm are autonomously determined using the grey wolf optimizer (GWO). The proposed active controller can be implemented in real vehicles by using an on-vehicle acceleration sensor and electronic control unit (ECU). In a simulation environment, the vehicle body vibration is online fed back to the resultant controller, and an actuator is supposed to apply control commands to the driveline. The effectiveness of this newly proposed active controller is confirmed through comparative tests, revealing the superior vibration control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call