Abstract

The effect of freeze–thaw (F–T) in the seasonal frozen area would lead to damage to asphalt pavement. After water enters asphalt pavement, the water in voids would expand at a lower temperature, which could change the void content and number, affecting the macro mechanical properties of the asphalt mixture. The rapid development of CT scanning and digital image processing (DIP) provides powerful technical support for the research of asphalt mixture meso volume characteristics. In this paper, the mechanical properties of basalt fiber reinforced asphalt mixture subjected to F–T cycles were tested at different temperatures to clarify the decay law of mechanical properties under F–T cycles. Then, the meso images of the asphalt mixture under various F–T cycles could be obtained by using CT tomography. Based on DIP technology, the meso characteristic parameters of CT images for asphalt mixture were extracted, and the development of asphalt mixture freeze–thaw damage was further analyzed. The test results showed that with the F–T cycle, the macro mechanical properties of the asphalt mixture rapidly declined in the early stage of the F–T cycle and gradually tended to be flat. There would be serious damage inside the asphalt mixture in the late stage of the F–T cycle. The damage to the mechanical properties of the asphalt mixture under the F–T cycle can be attributed to the change in the internal mesostructure of the asphalt mixture. Based on the grey relational analysis theory, the formation of the connected void was the main factor affecting the damage in the early stage of the F–T cycle, while the formation of new voids mainly affected the later development of F-T damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.