Abstract
We have seen a promising acceptance of wireless local area networks (WLANs) in our day-to-day communication devices, such as handheld smartphones, tablets, and laptops. Energy preservation plays a vital role in WLAN communication networks. The efficient use of energy remains one of the most substantial challenges to WLAN devices. Several approaches have been proposed by the industrial and institutional researchers to save energy and reduce the overall power consumption of WLAN devices focusing on static/adaptive energy saving methods. However, most of the approaches save energy at the cost of throughput degradation due to either increased sleep-time or reduced number of transmissions. In this paper, we recognize the potentials of reinforcement learning (RL) techniques, such as the Q-learning (QL) model, to enhance the WLAN’s channel reliability for energy saving. QL is one of the RL techniques, which utilizes the accumulated reward of the actions performed in the state-action model. We propose a QL-based energy-saving MAC protocol, named greenMAC protocol. The proposed greenMAC protocol reduces the energy consumption by utilizing accumulated reward value to optimize the channel reliability, which results in reduced channel collision probability of the network. We assess the degrees of channel congestion in collision probability as a reward function for our QL-based greenMAC protocol. The comparative results show that greenMAC protocol achieves enhanced system throughput performance with additional energy savings compared to existing energy-saving mechanisms in WLANs.
Highlights
Energy harvesting and saving have become vital subjects of interest for researchers working on wireless communication technologies
Once the data are successfully received, an STA changes its state to SLP mode for energy saving purposes, while access point (AP) may remain busy in its other tasks, such as transmission to other STAs in the wireless local area networks (WLANs)
An intelligent QL-based power saving mode (PSM) mechanism based on the channel observation approach is used to resolve the energy deprivation issue due to high contention in the WLANs caused by the carrier sense multiple access with collision avoidance (CSMA/CA) of the conventional PSM mechanism
Summary
Energy harvesting and saving have become vital subjects of interest for researchers working on wireless communication technologies. Device ( referred as a WLAN station—STA) is assumed to have the capacity to save energy while performing most of its important tasks—such as accessing the medium access control (MAC) layer channel—and resource allocation mechanisms. Such techniques are more prominent and needful when these STAs are low power and energy-constrained. The MAC layer decides how STAs share the transmission medium in a WLAN and controls the activities of their radio interfaces It plays a significant role in accomplishing high throughput, lower delay, and energy efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.