Abstract

Simple SummaryGreenhouse gas (GHG) emissions were measured from three different cage layer housing systems. A comparative study was conducted to identify the housing system with the least impact on the environment. The results showed that liquid manure from deep-pit housing systems produces greater emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) than natural and forced dried manure from belt housing systems. The influencing factors appeared to be the manure removal frequency and the dry matter content of the manure.Agriculture accounts for 10 to 12% of the World’s total greenhouse gas (GHG) emissions. Manure management alone is responsible for 13% of GHG emissions from the agricultural sector. During the last decade, Québec’s egg production systems have shifted from deep-pit housing systems to manure belt housing systems. The objective of this study was to measure and compare carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions from three different cage layer housing systems: a deep liquid manure pit and a manure belt with natural or forced air drying. Deep liquid manure pit housing systems consist of “A” frame layer cages located over a closed pit containing the hens’ droppings to which water is added to facilitate removal by pumping. Manure belt techniques imply that manure drops on a belt beneath each row of battery cages where it is either dried naturally or by forced air until it is removed. The experiment was replicated with 360 hens reared into twelve independent bench-scale rooms during eight weeks (19–27 weeks of age). The natural and forced air manure belt systems reduced CO2 (28.2 and 28.7 kg yr−1 hen−1, respectively), CH4 (25.3 and 27.7 g yr−1 hen−1, respectively) and N2O (2.60 and 2.48 g yr−1 hen−1, respectively) emissions by about 21, 16 and 9% in comparison with the deep-pit technique (36.0 kg CO2 yr−1 hen−1, 31.6 g CH4 yr−1 hen−1 and 2.78 g N2O yr−1 hen−1). The shift to manure belt systems needs to be encouraged since this housing system significantly decreases the production of GHG.

Highlights

  • Worldwide environmental issues are dominated by climate change, especially by the increase in greenhouse gas (GHG) emissions [1]

  • Manure management alone is responsible for 13% of GHG emissions from the agricultural sector [6]

  • The specific objective addressed in this research consisted in determining which of the three cage layer housing systems was the most promising in mitigating GHG emissions

Read more

Summary

Introduction

Worldwide environmental issues are dominated by climate change, especially by the increase in greenhouse gas (GHG) emissions [1]. Manure management alone is responsible for 13% of GHG emissions from the agricultural sector [6]. Québec’s egg production has shifted from deep-pit housing systems (liquid manure management) to manure belt housing systems (solid manure management). After reaching more than 90% in 1999, deep liquid manure pit systems have dropped to 36% in layer houses in 2009, while manure belt houses have become more popular increasing from 8 to 63% during the same period [7,8]. The same phenomenon has been noted in the United States where newly constructed houses mostly use manure belt systems [9]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call