Abstract

Manure treatment such as anaerobic digestion and solid-liquid separation has shown a potential to abate greenhouse gas (GHG) emissions, but few studies have considered GHG emissions from both storage and field application regarding crop yield. In this study, four different organic fertilizers were studied: untreated cattle manure (CA); digestate of cattle manure anaerobically co-digested with grass-clover (DD); a liquid fraction from the separation of DD (LF); and a liquid fraction derived from a biogas desulfurization biofilter enriched with sulfur and ammonium (NS). The CH4, N2O and NH3 emissions during storage of CA, DD and LF between August and November 2020 (11 weeks) were quantified. Storage continued until April 2021 when these materials, as well as the NS fertilizer and a mineral NKS fertilizer, were applied at a rate of 100 kg total N ha−1 to spring barley. N2O emissions and soil mineral N content were monitored during the growing season. Overall, CH4 emissions during storage were the main source of GHG emissions independent of treatments, accounting for 85 %, 40 % and 11 % of total GHG emissions (based on field application of 100 kg ha−1 total N) from treatments CA, DD and LF, respectively. Anaerobic digestion and separation significantly reduced CH4 emissions during storage due to the diminished content of degradable organic matter available for methanogens. The N2O emissions from treatments CA, DD, and LF during storage were not significantly different. Treatments DD and LF emitted more NH3 than CA during storage, presumably because of higher pH and ammonium content. In the field experiment, the dilute solution of NS emitted the most N2O, while emissions from treatments CA, DD and LF were comparable. Yield-scaled GHG emissions for treatments CA, DD, LF and NS during both periods of storage and field were 44.4, 17.1, 8.5 and 24.3 kg CO2 eq hkg−1 grain yield, respectively. Anaerobic digestion with or without separation were thus effective strategies for the mitigation of GHG emissions from cattle manure in this study. Yields and nitrogen use efficiencies of the processed manure materials were not significantly different from those observed with the same N application rate as inorganic fertilizer, and hence anaerobic digestion with or without separation were promising GHG mitigation strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call