Abstract

We propose a circuit quantum electrodynamics (QED) realization of a protocol to generate a Greenberger-Horne-Zeilinger (GHZ) state for $N$ superconducting transmon qubits homogeneously coupled to a superconducting transmission line resonator in the dispersive limit. We derive an effective Hamiltonian with pairwise qubit exchange interactions of the XY type, $\tilde{g}(XX+YY)$, that can be globally controlled. Starting from a separable initial state, these interactions allow to generate a multi-qubit GHZ state within a time $t_{\text{GHZ}}\sim \tilde{g}^{-1}$. We discuss how to probe the non-local nature and the genuine $N$-partite entanglement of the generated state. Finally, we investigate the stability of the proposed scheme to inhomogeneities in the physical parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call