Abstract
Green Vehicle Routing Optimization Problem (GVROP) is currently a scientific research problem that takes into account the environmental impact and resource efficiency. Therefore, the optimal allocation of resources and the carbon emission in GVROP are becoming more and more important. In order to improve the delivery efficiency and reduce the cost of distribution requirements through intelligent optimization method, a novel multiobjective hybrid quantum immune algorithm based on cloud model (C-HQIA) is put forward. Simultaneously, the computational results have proved that the C-HQIA is an efficient algorithm for the GVROP. We also found that the parameter optimization of the C-HQIA is related to the types of artificial intelligence algorithms. Consequently, the GVROP and the C-HQIA have important theoretical and practical significance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.