Abstract

In recent years, a number of multi-objective immune algorithms (MOIAs) have been proposed as inspired by the information processing in biologic immune system. Since most MOIAs encourage to search around some boundary and less-crowded areas using the clonal selection principle, they have been validated to show the effectiveness on tackling various kinds of multi-objective optimization problems (MOPs). The crowding distance metric is often used in MOIAs as a diversity metric to reflect the status of population’s diversity, which is employed to clone less-crowded individuals for evolution. However, this kind of cloning may encounter some difficulties when tackling some complicated MOPs (e.g., the UF problems with variable linkages). To alleviate the above difficulties, a novel MOIA with a decomposition-based clonal selection strategy (MOIA-DCSS) is proposed in this paper. Each individual is associated to one subproblem using the decomposition approach and then the performance enhancement on each subproblem can be easily quantified. Then, a novel decomposition-based clonal selection strategy is designed to clone the solutions with the larger improvements for the subproblems, which encourages to search around these subproblems. Moreover, differential evolution is employed in MOIA-DCSS to strength the exploration ability and also to improve the population’s diversity. To evaluate the performance of MOIA-DCSS, twenty-eight test problems are used with the complicated Pareto-optimal sets and fronts. The experimental results validate the superiority of MOIA-DCSS over four state-of-the-art multi-objective algorithms (i.e., NSLS, MOEA/D-M2M, MOEA/D-DRA and MOEA/DD) and three competitive MOIAs (i.e., NNIA, HEIA, and AIMA).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.